Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemCatChem ; 10(12): 2627-2633, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30069247

RESUMO

Tailored mutants of phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) were created and tested in ammonia elimination from various sterically demanding, non-natural analogues of phenylalanine and in ammonia addition reactions into the corresponding (E)-arylacrylates. The wild-type PcPAL was inert or exhibited quite poor conversions in both reactions with all members of the substrate panel. Appropriate single mutations of residue F137 and the highly conserved residue I460 resulted in PcPAL variants that were active in ammonia elimination but still had a poor activity in ammonia addition onto bulky substrates. However, combined mutations that involve I460 besides the well-studied F137 led to mutants that exhibited activity in ammonia addition as well. The synergistic multiple mutations resulted in substantial substrate scope extension of PcPAL and opened up new biocatalytic routes for the synthesis of both enantiomers of valuable phenylalanine analogues, such as (4-methoxyphenyl)-, (napthalen-2-yl)-, ([1,1'-biphenyl]-4-yl)-, (4'-fluoro-[1,1'-biphenyl]-4-yl)-, and (5-phenylthiophene-2-yl)alanines.

2.
Org Biomol Chem ; 15(17): 3717-3727, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28405665

RESUMO

This study focuses on the expansion of the substrate scope of phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) towards the l-enantiomers of racemic styrylalanines rac-1a-d - which are less studied and synthetically challenging unnatural amino acids - by reshaping the aromatic binding pocket of the active site of PcPAL by point mutations. Ammonia elimination from l-styrylalanine (l-1a) catalyzed by non-mutated PcPAL (wt-PcPAL) took place with a 777-fold lower kcat/KM value than the deamination of the natural substrate, l-Phe. Computer modeling of the reactions catalyzed by wt-PcPAL indicated an unproductive and two major catalytically active conformations and detrimental interactions between the aromatic moiety of l-styrylalanine, l-1a, and the phenyl ring of the residue F137 in the aromatic binding region of the active site. Replacing the residue F137 by smaller hydrophobic residues resulted in a small mutant library (F137X-PcPAL, X being V, A, and G), from which F137V-PcPAL could transform l-styrylalanine with comparable activity to that of the wt-PcPAL with l-Phe. Furthermore, F137V-PcPAL showed superior catalytic efficiency in the ammonia elimination reaction of several racemic styrylalanine derivatives (rac-1a-d) providing access to d-1a-d by kinetic resolution, even though the d-enantiomers proved to be reversible inhibitors. The enhanced catalytic efficiency of F137V-PcPAL towards racemic styrylalanines rac-1a-d could be rationalized by molecular modeling, indicating the more relaxed enzyme-substrate complexes and the promotion of conformations with higher catalytic activities as the main reasons. Unfortunately, ammonia addition onto the corresponding styrylacrylates 2a-d failed with both wt-PcPAL and F137V-PcPAL. The low equilibrium constant of the ammonia addition, the poor ligand binding affinities of 2a-d, and the non-productive binding states of the unsaturated ligands 2a-d within the active sites of either wt-PcPAL or F137V-PcPAL - as indicated by molecular modeling - might be responsible for the inactivity of the PcPAL variants in the reverse reaction. Modeling predicted that the F137V mutation is beneficial for the KRs of 4-fluoro-, 4-cyano- and 4-bromostyrylalanines, but non-effective for the KR process of 4-trifluoromethylstyrylalanine.


Assuntos
Alanina/química , Alanina/metabolismo , Petroselinum/enzimologia , Fenilalanina Amônia-Liase/metabolismo , Domínio Catalítico , Cinética , Modelos Moleculares , Mutação , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/genética , Especificidade por Substrato
3.
Chembiochem ; 16(16): 2283-8, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26345352

RESUMO

Phenylalanine ammonia-lyase (PAL), found in many organisms, catalyzes the deamination of l-phenylalanine (Phe) to (E)-cinnamate by the aid of its MIO prosthetic group. By using PAL immobilized on magnetic nanoparticles and fixed in a microfluidic reactor with an in-line UV detector, we demonstrated that PAL can catalyze ammonia elimination from the acyclic propargylglycine (PG) to yield (E)-pent-2-ene-4-ynoate. This highlights new opportunities to extend MIO enzymes towards acyclic substrates. As PG is acyclic, its deamination cannot involve a Friedel-Crafts-type attack at an aromatic ring. The reversibility of the PAL reaction, demonstrated by the ammonia addition to (E)-pent-2-ene-4-ynoate yielding enantiopure l-PG, contradicts the proposed highly exothermic single-step mechanism. Computations with the QM/MM models of the N-MIO intermediates from L-PG and L-Phe in PAL show similar arrangements within the active site, thus supporting a mechanism via the N-MIO intermediate.


Assuntos
Aminoácidos/metabolismo , Nanopartículas de Magnetita/química , Fenilalanina Amônia-Liase/metabolismo , Aminoácidos/química , Biocatálise , Desaminação , Cinética , Técnicas Analíticas Microfluídicas , Modelos Moleculares , Fenilalanina Amônia-Liase/química , Teoria Quântica
4.
PLoS One ; 9(1): e85943, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475062

RESUMO

The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24) of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL) was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD) studies showed that RxPAL is associated with an extensive α-helical character (far UV CD) and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia.


Assuntos
Actinobacteria/enzimologia , Modelos Moleculares , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cromatografia de Afinidade , Dicroísmo Circular , Clonagem Molecular , Primers do DNA/genética , Escherichia coli , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Fenilalanina Amônia-Liase/química , Conformação Proteica , Análise de Sequência de DNA , Homologia de Sequência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...